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1.0 ABSTRACT 

International agreements of the United Nations Framework Convention on Climate Change 

seek to reduce national, forest-related, greenhouse gas emissions via activities and policies on 

reduced emissions from deforestation and degradation, plus the role of conservation, sustainable 

forest management and enhancement of forest carbon stocks (REDD+). These agreements 

require countries to report changes in forest cover and carbon stocks via a process called 

measurement, reporting and verification (MRV). The International Panel on Climate Change has 

communicated quality principles for national MRV: transparency, completeness, consistency, 

comparability and accuracy. Recent advances in satellite monitoring of forests have led to 

greater automation, which is expected to better enable countries to regularly report and meet 

these principles. This paper provides an overview of general steps taken with these methods to 

produce large-area estimates of deforestation, similarities and differences among methods, 

where automation occurs, where analyst input occurs and implications for national 

implementation and the quality principles.
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2.0  INTRODUCTION 

2.1 REDD+ MRV 

Monitoring forest cover and deforestation is critical for effective LU planning in forested 

countries and for estimating the impacts of forest-related land-use change. It is also a 

requirement for reporting obligations associated with agreements on reduced emissions from 

deforestation and degradation, plus the role of conservation, sustainable forest management and 

enhancement of forest carbon stocks (REDD+). These agreements include those within the 

United Nations Framework Convention on Climate Change (UNFCCC), bi-lateral agreements 

and agreements with donor institutions. 

In the context of REDD+, these monitoring systems are built to specifically conduct activities 

known as measurement, reporting and verification (MRV). MRV guidance is provided by the 

International Panel on Climate Change (IPCC), specifically the IPCC Guidelines for National 

Greenhouse Gas Inventories (IPCC, 2006). While the IPCC provides detailed guidance on the 

estimation of carbon stocks and calculations of emissions and uncertainty, it provides general 

criteria for estimating land-cover change. 

The IPCC Guidelines (2006) list quality principles that are internationally accepted for national 

MRV. These are: 

 Transparency: Sufficient and clear documentation allows those other than the inventory 

compilers to understand the compilation of the inventory and confirm data quality. 

 Completeness: Reporting for all relevant activities is complete, with data gaps clearly 

documented. 

 Consistency: Reporting for different inventory years, gases and categories ensures that 

differences in the results reflect real differences in emissions and not artifacts of differing 

methods. 

 Comparability: Reporting must be comparable with GHG inventories from other countries. 

 Accuracy: Reporting must seek to avoid either over- or under-estimation, and uncertainties 

must be estimated and reduced as much as is possible. 

Another important factor is latency, or the time taken to generate estimates of forest change. 

Satellite-based analyses may take too long and consequently be out of date upon completion. 

UNFCCC reporting is due every four years for national communications and every two years 

for Biennial Update Reports (BURs). BURs are supposed to include information for the previous 

year, and thus national land-cover change assessments should be achievable within one year. 

These principles are relevant not solely to the UNFCCC or REDD+ but also to any monitoring 

system that will be used for national planning or international comparative assessments. 

Several available documents summarize IPCC guidance and provide additional specific 

information on satellite monitoring of forests. These include the Global Observation of Forest 

and Land Cover Dynamics Sourcebook (GOFC-GOLD, 2015), the USAID-supported Forest 

Carbon, Markets and Communities Program REDD+ MRV Manual (FCMC, 2015), the Global 
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Forest Observation Initiative Methods and Guidance Documentation (GFOI, 2015), the UN-

REDD National Forest Monitoring Systems report (UN-REDD, 2015) and the Forestry and 

Forest Products Research Institute’s REDD+ Cookbook (FFPRI, 2015). These resources provide 

a range of perspectives and approaches to the use of satellite data to generate AD. Another 

useful review of semi-automated approaches to satellite monitoring is that of Hansen and 

Loveland (2012). 

The remote sensing research community has engaged directly with national governments to 

improve national capacity for monitoring, yielding case studies of applications of different 

approaches at the national level. However, in most cases countries have not conducted 

demonstrations of different approaches at the national level.  

This paper summarizes some of the methods for semi-automated detection of forest cover 

change using remote sensing that have been developed by major research organizations. These 

may be considered appropriate for national applications, and this report highlights major 

similarities and key distinctions among them. It is intended to complement Hansen and Loveland 

(2012), specifically in the context of national MRV systems. We provide this for the non-

specialist in remote sensing who is nonetheless familiar with fundamental remote sensing 

concepts and terminology and who is involved in strategies for national or sub-national MRV 

systems. 

2.2 FUNDAMENTAL DATA CONSIDERATIONS IN SATELLITE 
MONITORING OF FORESTS 

An overall approach to monitoring forests begins with the selection of the source of satellite 

data. Some key considerations in selecting satellite imagery are spatial resolution, temporal 

frequency, archive length and completeness, data type, geometric and radiometric 

characteristics, cost and future data availability. 

The spatial resolution of satellite images used for land-cover mapping ranges from less than one 

meter to one kilometer, or coarser. There is a trade-off between spatial resolution and both 

cost and the frequency of data acquisitions. Data with resolutions finer than approximately 30 

meters are often expensive to acquire over an entire country. They also are not collected 

frequently; some very high-resolution sensors may only revisit particular sites annually or may 

require tasking, i.e. requests for specific acquisitions to be made. Thus it can be costly and 

logistically difficult to obtain national coverage of very high-resolution data, and archives can 

have major gaps in coverage, especially within a specific year. Very high-resolution satellite 

imagery are presently most suitable for sample-based approaches and for assisting calibration 

and validation of analyses of coarser data. Some examples of very high-resolution commercial 

satellite data are RapidEye, Quickbird, IKONOS, WorldView-2, SPOT HRV series, CBERS HRC, 

GeoEye-1 and -2, DMC constellation, KOMPSTAT-2 and RESOURCESAT-1.  

Coarse-resolution data (with resolutions between 250 meters and 1 kilometer) are mostly 

collected on a daily basis and are available free of cost. They provide a dense time series and are 

particularly valuable for studying seasonal attributes such as vegetation deciduousness and 

inundation. However, their coarse resolution limits their usefulness to quantifying deforestation, 

since much deforestation occurs in small patches of several hectares or less. The most 

prominent examples of coarse data sources are the National Aeronautics and Space Agency’s 

(NASA) Moderate-Resolution Imaging Spectrometer (MODIS) and the more recent Visible 

Infrared Imaging Radiometer Suite (VIIRS) (NASA, 2015a and 2015b), and France’s SPOT 

VEGETATION and the more recent European PROBA-V (SPOT, 2015; ESA, 2015a). Because of 
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their frequent acquisitions, these data are most useful for near-real-time alert systems. Several 

systems have been developed based on data acquired by these sensors, providing rapid alerts of 

locations of active fires and larger clearings, as well as conditions of drought and fire risk (e.g., 

INPE, 2015a; NASA, 2015c; CI, 2015; FAN 2015). 

Medium-resolution data represent the most common sources for national forest monitoring 

because they offer an optimal combination of appropriate resolution, acquisition frequency, 

coverage and cost, as well as other technical characteristics. Examples are Landsat (NASA, 

2015d), at 15 to 30 meters, and the SPOT HRV sensors, at 10 to 20 meters (ESA, 2015b). 

Landsat has the longest record and most thorough archive. With a revisit time of 16 days and 

routine archiving of all acquisitions, compositing multiple images to enable appropriate coverage 

is possible in all but the most extremely cloudy parts of the world. Landsat data include bands in 

the three most useful spectral regions for distinguishing forests from non-forest cover types: 

visible, near-infrared and middle-infrared. Data are also free to the public. While the SPOT 

satellites have similar characteristics, these data must be purchased and have a less thorough 

archive. Data from the Sentinel 2 series are also anticipated to support national forest 

monitoring needs in the coming years (ESA, 2015c). Sentinal 2A is scheduled to launch in 2015 

and is expected to provide data with characteristics similar to Landsat at no cost. 

Landsat data extend back to 1972, with early launches carrying the Multi-spectral Scanning 

System sensor. Since 1984 satellites equipped with Thematic Mapper sensors have provided 

increased spatial resolution and additional useful bands in the middle-infrared and thermal 

regions. For any given site, data are collected as frequently as every two weeks, pending 

cloudiness, allowing for a characterization of seasonal changes and sub-annual events. Data from 

the reflectance bands in the three regions provide the principal information content possible 

from optical data. The visible bands can indicate leaf absorption of sunlight as well as 

atmospheric haze and some variability in soil color. The near-infrared band is critical for 

estimating green-leaf cover, given very high reflectance in this band. The two middle-infrared 

bands are also useful for detecting leaf cover, via absorption by water in leaves; are sensitive to 

canopy shading that can help detect taller forests and can indicate variations in soils and soils 

versus non-green leaves and branches.  

All of the above examples of data are passive optical data, i.e., they record reflected solar energy 

from the earth’s surface in the visible, near-infrared and middle-infrared spectral regions. 

Another major type of satellite data is radio detection and ranging (RADAR). RADAR is active 

(the instrument sends a signal and measures the signal that returns from a surface) and works in 

the microwave spectrum, where energy interacts with vegetation and land very differently. 

RADAR penetrates clouds and thus is of particular interest in very cloudy regions. Presently, 

few RADAR data options exist that offer the coverage, archive, cost and technical specifications 

appropriate for accurate mapping of forest cover to warrant their use, except in the cloudiest 

regions. Radar and active remote sensing applications are in research and development, and 

better options will be available in the near future. Optical data currently remain the main data 

source for national forest monitoring; among these, Landsat is by far the most consistently 

used—understandable given its balance of high quality and free distribution.   

Most satellite-derived maps of national forest cover or forest change to date have been 

produced via supervised classification on a scene-by-scene basis. These are often based on direct 

classification of change from two dates of imagery, rather than comparing the outputs of two 

classifications of individual dates. They have relied on analyst expertise in image interpretation, 

supplemented by information from the field or aerial surveys. Classifications are usually an 

iterative process until an acceptable product is obtained for a given scene, followed by 

combining all scenes to produce a national mosaic. Other approaches have applied un-
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supervised classification, which identifies clusters of data that are spectrally similar, or 

segmentation, which identifies groups of neighboring and spectrally-similar pixels. In these, the 

analyst interpretation occurs when they assign class labels to the clusters or segments rather 

than in the training process in supervised classification (e.g. Beuchle 2011, INPE 2015b).  

While these products have often provided accurate estimates of forest cover, and to a lesser 

degree forest change, they are arguably too sensitive to variation in analyst interpretation, risk 

unreported errors in certain steps and are potentially difficult to reproduce. They also may 

show significant differences between scenes (which are processed independently), often 

indicated by scene edges apparent in the maps. Depending on the approach, they may be too 

slow and too costly in terms of analyst time for practical application on a yearly basis. For these 

reasons, approaches that involve greater automation and standardization of the classification 

process are sought to better meet the five IPCC criteria. 
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3.0  SEMI-AUTOMATED 

APPROACHES TO 

MONITORING FORESTS 

Each of the approaches described below contains automated steps but also requires some 

analyst interaction during the process; no fully automated approach has yet produced validated 

estimates of deforestation over time at the national level. Some of the semi-automated 

approaches have been applied by national governments and have successfully produced national 

maps of deforestation that are available to the public for review. Others are methodologies 

currently being researched that have not yet generated products available to the public.  

We restrict this review to Landsat-based approaches, since Landsat is the most common data 

source used for national-level forest monitoring to date. Landsat is a series of satellites that 

provide images in the visible, near- and middle-infrared spectra. They are delivered as image tiles 

with a width of 180 kilometers and a pixel layout with a 30-meter resolution. They are very well 

archived and researched and are available free to the public (NASA, 2015d).  

Figure 1 summarizes the overall steps required for all of the methods discussed in this report. 

As will be discussed, there is potential for automation in all steps; in current applications, 

automation mostly occurs in all steps except for preparing classification. Overall processing 

streams used for forest monitoring can be considered as three broad phases: pre-processing, 

classification and post-processing. 

3.1  IMAGE PRE-PROCESSING AND AUTOMATION  

The quality of Landsat data has gradually improved over the past two decade as new satellites 

with improved sensors have been launched. Improvements also have been made in data 

processing for distribution to the public, as well as in methods available to users to pre-process 

data before applying classifications of land cover. Two key improvements are geometric and 

radiometric corrections. All new images from Landsat, as well as the entire historical archive, 

have been re-mapped to improve the geographic location of the images. As a result, the images 

received are now precisely mapped with a locational error of less than one pixel. This allows 

rapid overlay of images for estimating change without a need for users to co-register them.   

Improvements in methods for radiometric corrections have reduced the effects of atmospheric 

conditions and of sun and view angles, enabling more consistent spectral analysis over time. This 

is another value of Landsat data, since they are radiometrically calibrated over time and 

parameters are provided to convert to comparable estimates of surface reflectance (e.g., NASA, 

2015e). Automated cloud-masking tools developed for Landsat can be incorporated into a larger 

image-processing stream.  

Data quality improvements have been complemented by increases in computer processing 

speeds. Programs can now process and classify large batches of images rather than just a few at 

a time. This enables both data-mining approaches that maximize the use of time series and 



 

 

SEMI-AUTOMATED APPROACHES FOR MONITORING NATIONAL DEFORESTATION     9 

approaches to processing and classifying mosaics of neighboring images over a region, or even an 

entire country.  

 

Figure 1. Flow chart of overall steps common to methods for estimating or updating 

deforestation or land-cover change. Currently, automation occurs in all steps except for 

preparing classifications. In this step, users typically interpret images to define rules or training 

sites for use in a rule-based or supervised classification. Interpretation must be aligned with the 

national definition of forest, and should be as consistent as possible with interpretation of other 

Image selection 

Individual image from each year, multi-seasonal images, data mining 

Pre-processing 

Sun- and view-angles, atmospheric correction, cloud / cloud-shadow mask 

Transformations 

Spectral indices, SMA, two-year difference,  

multi-annual trends and metrics, seasonal model 

Prepare classification 

Rule-based: 

Apply and evaluate default 

rules, iteratively test varied 

rules 

Prepare classification 

Supervised: 

Use training sites from 

previous analysis, iteratively 

test additions of new training 

sites for use in classification 

Automated 

updates 

Apply rules 

or signatures/ 

DTs from 

previous 

analysis to 

conduct 

update Classify 

Rule-based: 

Apply final set of rules in a 

rule-based model 

Classify 

Supervised: 

Use final set of training sites 

in classification algorithm, 

e.g., DT 

Combine with previous analysis 

Combine raster classification with raster data from previous, create new multi-temporal 

classes via logical criteria 

) 

Post-processing 

Filter to a defined MMU, merge neighboring-scene results  

into a regional / national mosaic 
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areas and time periods. Although not yet applied at the national level, there is potential for full 

automation of updates, indicated in the box to the right. 

3.2 DATA TRANSFORMATIONS AND TIME SERIES ANALYSIS 

The above-noted improvements enable greater automation, at least of the pre- and post-

processing steps. More automation, even if only for pre- and post-processing, means that much 

of the processing stream can be applied more consistently by different analysts over time. It also 

should result in images with fewer radiometric effects, facilitating consistent image interpretation 

in the classification step.  

For some approaches, there is an additional step after pre-processing and classification. This is 

transformation of the data from reflectance to some other units (e.g., spectral indices or 

spectral-temporal indices). This step may further reduce the risk of inconsistent interpretation 

or classification outputs, as the effects of artifacts in individual bands can be reduced when 

combining with other bands or image dates. Consistent radiometric characteristics resulting 

from pre-processing, and the use of indices if data transformation is applied, can potentially 

facilitate semi-automation of the classification step itself.  

Among proposed approaches to semi-automated monitoring—perhaps the area of greatest 

diversity—is in data transformations following pre-processing and preceding classification. Some 

of the most common spectral indices in remote sensing are vegetation indices. These are usually 

combinations of reflectance in the red band, highly absorbed by green leaves, and the near-

infrared band (NIR), highly reflected by leaves. For example, the simple ratio of reflectances in 

the red and near-infrared (red/NIR) and the normalized-difference vegetation index (NDVI = 

NIR-red/NIR+red) are used by several methods. A significant reduction is most likely if an image 

is acquired immediately after clearance, when there is exposed soil, i.e., before crop 

development, pasture establishment or some other form of vegetation regrowth has occurred. 

One of the risks of being overly dependent on vegetation indices for monitoring change in 

forests is that many non-forest vegetation types have index values as high as those for forests, 

making it difficult to distinguish forest and non-forest vegetation. 

Two of the approaches discussed in the Section 4 apply data transformation via spectral mixture 

analysis (SMA). SMA is a method to convert data from images of spectral reflectances to 

fractional images, with values within each pixel of sunlit leaf, soil, non-green vegetation and 

shade, for example. The intent is to use indices that can be commonly derived from different 

data sources, as well as to interpret data in terms of physical parameters that may be easier for 

non-specialists to understand than spectral reflectance values. 

A second class of data transformation is the calculation of temporal indices. In these 

transformations, the differences in spectral reflectance values between two individual images 

from different years are calculated, either as absolute values or normalized across a range for a 

particular image or study area. Although difficult in cloudy regions, it is preferable to capture 

images from the same season when mapping change in deciduous forests. This is to minimize the 

potential for confusion between differences due to land-cover change versus varying drought 

effects between years. The use of images throughout a given year to characterize the seasonal 

pattern in spectral reflectances of different land-cover types also can result in a “signature” for a 

certain type of land cover. Fourier analysis and other methods can be used to summarize 

seasonal signals, and changes in derived indices over years can be estimated as a basis for 

estimating change in cover over time. This may involve smoothing seasonal signals or 

interpolation when there are data gaps for parts of the year.  
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A third data transformation example involves data mining and calculations of a potentially large 

number of temporal indices. In this computationally intensive approach, most or all images over 

a time period for a given area are included. Pre-processing and cloud masking are applied to 

maximize radiometric consistency. Images from a given year may be combined to produce 

mosaics that minimize gaps due to clouds. While the mosaics themselves can be classified, there 

is much useful information in the full set of source images, and a wide range of temporal metrics 

can be derived from these. Examples are change in mean reflectance among years, difference 

between reflectance in one year and the maximum reflectance observed in a later year, trend in 

reflectance over several years, etc. Particular strengths of a data mining approach are the 

abilities to minimize gaps from cloud cover and to maximize the potential to observe a strong 

signal of change soon after forest conversion. This approach may also allow classification of 

changes over large areas at a time, rather than on a scene-by-scene basis. 

3.3 CLASSIFICATION 

For the critical classification step, most methods are either supervised or based on a set of rules 

defined by analysts. For the former, an analyst trains the classification algorithm by exploring the 

image data to identify and delineate sample training sites of different classes of land-use change. 

The set of sites is the basis for the calculation of spectral signatures used in a classification 

algorithm. The remaining unidentified parts of the image are assigned to classes based on their 

similarity to these signatures. A range of statistical algorithms can be used, such as maximum-

likelihood or decision trees (DTs; Breiman, Friedman, & Olshen, 1984), yet they are all 

considered supervised because of the training step. 

For rule-based methods, often called knowledge-based methods, an analyst must explore the 

image data to determine thresholds in data values for different image indices, which are then 

applied to classify the data. A set of default rules may exist but users often adjust them. This is a 

supervised classification process, although the eventual algorithm used is much simpler, i.e., a 

short set of data thresholds to define classes. Because of the simple algorithm, these methods 

tend to benefit most from certain types of data transformations prior to classification. In both 

the supervised and rule-based approaches, several iterations typically are run before completing 

an analysis. After each iteration, results are evaluated for conspicuous errors, and training sites 

or rules are adjusted to address them before running a new iteration. 

There is a fundamental difference between an approach based on statistical classification and one 

based on rules. In a statistical approach, the assumption is that spectral differences among 

classes can be subtle, and the derivation of precise spectral signatures is important to best 

estimate these. For algorithms such as maximum-likelihood, sub-classes often are created by 

analysts to carefully distinguish classes, while for DTs, hundreds of sub-classes are automatically 

created until some minimum-error criterion is met. This generally maximizes use of the 

information content in the image data and is adaptable to subtle variations among land-cover 

classes and their spectral patterns. While training data can be applied in a consistent manner 

over time, this is only possible if the training step is based on a similar set of training sites that 

remain static over time, or a similar interpretation of spectral patterns over time.  

In a rule-based approach, the assumption is that the application of a small set of rules minimizes 

the risk of inconsistent image interpretation over time, and that these rules are sufficient to 

capture the subtle spectral differences between forest and other classes. Once a set of rules is 

determined, it is easier to demonstrate consistency over time in the method. However, there is 

a greater risk for erroneous classification results, especially in more difficult circumstances (e.g., 

in areas of seasonal vegetation, steep slopes and young secondary forests that are subtly 
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different spectrally from mature forests). Different sets of rules may be required for different 

parts of a study area. Thus, in a rule-based approach, greater emphasis must be placed on 

demonstrating that the use of relatively few rules does not lead to unnecessarily high error 

levels, while in a statistical-classification approach, greater emphasis must be placed on 

demonstrating that the method is applied consistently over time. 

When evaluating possible approaches such as these, it is important to consider the five IPCC 

criteria when developing and communicating methods—in this case, potential trade-offs 

between consistency and accuracy. It is assumed that any approach will be well documented and 

thus meet the criteria of transparency. Comparability with information from other countries is 

dependent on transparency and an assurance that the method is compatible with the national 

forest definition. The final principle, completeness, is dependent on an analysis that covers the 

entire country, or at least the managed portion of it where reporting is required. While this may 

appear to be a simple matter of acquiring data for the whole country, the matter is not so 

straightforward for particularly cloudy regions. In such situations, multiple images, each with 

different patterns of cloud cover, are needed for a given area and time period in order to 

maximize the cloud-free area for classification. In such areas, data-mining approaches that 

automate the seeking of cloud-free observations are of particular interest.  

3.4 POST-PROCESSING 

Classifications are followed by one or more post-processing procedures before a final forest 

cover and change map is produced. Depending on the approach, some or all of these steps may 

be required.  

Statistical classification may involve creating many sub-classes of forest, non-forest and forest 

clearance. An initial step in this situation would be to merge sub-classes from the final 

classification into the final broader classes desired for reporting. If individual images are 

classified, then the results must be combined into a classification mosaic. Overlapping areas exist 

among neighboring Landsat images, for example, so decisions must be made about which images 

to prioritize in overlapping areas when producing a mosaic. Also, each image’s classification, or 

set of threshold rules, is often independent of the others. Disagreement in the classification 

results should be checked for the overlapping areas, as well as throughout the study area, to 

limit inconsistencies and artifacts resulting from these differences.  

A logical approach must be taken to combine classifications of land-cover change with maps 

already derived for a previous time period. Disagreements may exist between results from the 

new analysis and the previous product and these must be addressed. Another temporal issue is 

the specific acquisition dates of the images used. Cloud-free coverage may not be possible for all 

areas for a particular year, and thus the date of analysis may vary by one or more year. Dates 

will also vary within the year. It is advisable to store the source-image dates of every pixel 

included in the analysis. This allows a calculation of rates that corrects for varying image dates. 

3.5 NATIONAL DEFORESTATION MAPS 

As part of national preparations for REDD+, countries are developing their capacity to produce 

precise, accurate maps of forest change at the national level. Several countries have produced 

maps using more traditional approaches that rely heavily on analyst interpretation of individual 

images. These have yielded validated products that are accurate, but that could risk inconsistent 

image interpretation by analysts when updated, may be produced too slowly to ensure annual or 

biennial delivery of results or may be too cumbersome for regular application in a national MRV 

system. These approaches may potentially meet the five IPCC principles and be timely, 
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depending on how they are applied. However, they do not make use of the potential for semi-

automation, which could reduce the amount of time needed to generate outputs and help 

minimize the risk of inconsistent application over time. 

Examples of national or near-national products are those generated by the PRODES program of 

the Brazilian space agency for the Brazilian Amazon (INPE, 2015b). While it does not include the 

Cerrado, coastal forest or other forests, the program covers a very large region and has been 

used for analyses of yearly deforestation for over a decade. In other countries, national 

governments have coordinated with academia and nongovernmental organizations (NGOs) that 

have produced and updated national maps of deforestation.  

A few examples of national applications of the semi-automated approaches are discussed in the 

Section 4. Most are in the research domain or have recently undergone testing in sub-national 

and national applications. Increases in their use in national monitoring are expected as countries 

develop national MRV systems. Three of the methods discussed in the following section are 

distinct in that they have been applied at the national, or close-to-national level; two have 

yielded results that are available to the public for review. These three are the main methods 

discussed below, but others in the research domain with the goal of potential use in MRV 

systems are also noted. 
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4.0  EXAMPLES OF PROPOSED 

APPROACHES 

This section summarizes three approaches that have been applied or proposed for national-level 

forest monitoring in MRV systems. The first two, ClasLite and ImgTools, are applied on a scene-

by-scene basis, use SMA and estimate change directly from image pairs. The third, Global Land 

Analysis and Discovery (GLAD), is a data-mining approach, is applied at a regional level, includes 

the calculation of many temporal indices and assigns change to particular years based on the 

indices throughout the time period analyzed. These are the first three approaches listed in Table 

1. This table lists other approaches that have been applied in the research domain but not yet 

tested for application within a national MRV system. 

4.1 CLASLITE 

ClasLite is provided by Stanford University and has been applied in various countries, such as 

Peru and Colombia (Asner, Knapp, Balaji, & Paez-Acosta, 2009; Cabrera et al., 2011; MINAM, 

2011). It is based on developed, no-cost software that is available to users who complete a 

training exercise. ClasLite works with images from two different dates, applies SMA and then 

assigns pixels to change or not change based on a set of rules. 

ClasLite begins with an atmospheric correction using the 6S program (Vermote et al., 2015). 

This estimates reflectance at the earth’s surface, accounting for sun angle, sensor-view angle and 

standard atmospheric conditions for different regions that are applied scene-wide. Earlier 

versions masked clouds using thresholds in brightness temperature applied to Landsat’s thermal 

band. The latest version uses Fmask, a cloud-masking algorithm developed by Boston University 

(BU; Zhu, Woodcock, & Ologsson, 2012). As most cloud-mask algorithms miss thin clouds or 

cloud edges, additional masking is applied later during the classification step. 

ClasLite applies SMA by referring to a library of spectral end members (EMs) for dominant 

features on vegetated land. These dominant features are green vegetation (GV), non-green 

vegetation (NPV) and soil (S). GV may also be called sunlit leaf or photosynthetically-active 

vegetation. NPV may also be called non-photosynthetically active vegetation and includes 

branches, dried leaves and litter. Soil is any substrate and may vary significantly in spectra, yet 

some averages must be selected for the study area. EMs are spectral signatures for pure samples 

of each of these features. The logic of SMA is similar to that of gas spectrometry, where the 

proportion of each feature is estimated based on the spectral signature of the sample in 

question and knowledge of the pure spectra of expected components of the sample. In this case, 

the EM spectra are from libraries, i.e., records of field-based spectral measurements. The results 

are images of the fraction of cover of each of the features, which can be displayed, interpreted 

and classified as if they were reflectance images. 

The fractional image for green vegetation is the most critical in these rules. In order to reduce 

artifacts causing within-image variations in green vegetation, the latest version of ClasLite 

conducts a final re-scaling of this image. This rescaling aligns the image with the percent-

treecover values from the University of Maryland (UMD) GLAD product, discussed later in this 
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Table 1. Characteristics of selected semi-automated methodologies for monitoring forest change. See main text for references and sub-step 

descriptions. 

 
Name Temporal 

approach: 1-2 

images per 

year, time 

series of 

annual data, 

data mining 

Spatial 

approach: 

Scene-by-

scene vs. 

mosaic 

Preprocessing: 

Atmospheric 

correction 

Preprocessing: 

Cloud mask 

Data transformations Classification algorithm Countries, 

regions 

produced 

ClasLite Single image Single 6S Fmask SMA Threshold rules for changes in 

fractions 

Peru, sub-national 

Brazil 

ImgTools Single image Single LEDAPS, 

Carlotto 

SMA SMA Threshold rules for changes in 

fractions, or DT 

Sub-national 

Brazil, Pan-

Amazon lowlands 

GLAD Data mining Mosaic Fitted to MODIS Proprietary Temporal metrics of 

reflectances and spectral 

indices 

DT Indonesia, DRC, 

Peru, Mexico, 

Eastern Europe, 

Global 

VCT Single image Single None ACCA Spectral indices Threshold rules for Z-scores of 

annual changes in indices 

US 

CCDM Two images Single None Proprietary Yearly differences and 

vectors of spectral 

indices  

Threshold rules for annual 

changes in indices 

US 

LandTrendr Time series of 

annual data 

Single COST Tassled-cap 

thresholds 

Tassled Cap, temporal 

trend segmentation 

Threshold rules for segments of 

temporally fitted trends 

Western US 

CCDC Data mining Single LEDAPS Fmask Multi-annual, seasonal 

signal disaggregation 

Deviation from prediction model 

from preceding time series trend  

Massachusetts 
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section. ClasLite also outputs the root mean square error (RMSE) of the SMA. The fractional values, 

RMSE and reflectance values are then used in the classification step. 

ClasLite automates the pre-processing and data transformation steps to yield fraction images for the 

two dates of analysis for estimating change. Following this, the classification step may or may not require 

some analyst interaction. A default set of rules is provided to distinguish forest and deforestation over 

the two dates, as well as to mask additional clouds, cloud shadow, water and wetlands. These rules are 

sets of thresholds in the fractional values from individual dates and differences between the two dates, 

as well as in RMSE and reflectance in particular bands. The default rules of the latest version first define 

forest in the first date and then define forest change in two steps: 

Static Forest Cover:  

Forest: GV ≥ 80 and S < 20        (1) 

Non-forest: GV < 80 or S ≥ 20       (2) 

 

Deforestation Step 1: 

GV1 – PV2 ≥ 25          (3a) 

or S1 ≤  5 and S2 – S1 ≥ 15        (3b) 

 or PV2 < 80 and NPV2 – NPV1 ≥  20      (3c) 

 

Deforestation Step 2 (Removing False Positives): 

PV1,2  ≥ 80 and NPV1,2  ≥ 35 and RMSE1,2  ≥  6    (4a) 

or S2  ≥  50 and S2 < 100 and PV2 > 0      (4b) 

or NPV2 – NPV1  < 10  and  abs(Refl1b1 – Refl2b1) > 300    (4c) 

and abs(Refl1b4 – Refl2b4)  < 700 

and abs(Refl1b4 – Refl2b4) > 200 

where GV, NPV and S are the percent coverage of green vegetation, non-green vegetation and soil, 

respectively; RMSE is the root mean square error of the SMA; Refl is spectral reflectance; subscripts 1 

and 2 are the first and second image dates and subscripts b1 and b4 are Landsat bands 1 (i.e., blue) and 4 

(i.e., near-infrared). 

In equations 1 and 2, forest is defined as high in green vegetation and low in exposed soil. Via equation 

3a, a decrease in GV captures most deforestation; via 3b, an increase in soil captures additional 

deforestation that appeared as early secondary regrowth in the second date and via 3c, an increase in 

non-green vegetation captures still more deforestation. Step 2 removes false positives caused by un-

masked cloud shadows and water in image 1 or 2 (4a), un-masked cloud edges in image 2 (4b) and 

additional un-masked cloud rings, cloud shadows and topographic shadows (4c). The rules in step 2 

appear counterintuitive yet are based on testing with many images over various study areas. Following 

the application of rules, a three-by-three filter of roughly one-half hectare is applied to remove small 

artifacts of one or few pixels. 
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All of the above can be automated, or analyst interaction can enter in two ways. First, the above defaults 

can be accepted, and an additional step taken to remove more false positives. This is based on the 

difference over the two dates in band 1 reflectance, and users can seek an appropriate threshold via trial 

and error. Second, the above rules are not accepted if evaluation of the results through comparison to 

analyst interpretation of the reflectance images indicates poor performance. In this case, analysts would 

seek a different set of thresholds via trial and error. The same sequence of rules could be used, yet with 

modified threshold values to produce the most acceptable results. In this case, there is a significant role 

of analyst image interpretation in the method’s application. Finally, the latest version of ClasLite includes 

an option to apply the SMA and rule-based classification steps to mosaics, although it is recommended 

that pre-processing be applied to individual scenes. 

4.2 IMGTOOLS 

ImgTools is provided by the Brazilian NGO IMAZON and is available at no cost to the public. It also 

works with images from two different dates, applies SMA and then rules to assign pixels to change or no 

change.  

ImgTools uses the LEDAPS (Masek, 2005) combined with an algorithm from Carlotto (1999) to 

atmospherically correct images. Initial cloud masking is applied using cloud and shade fractions obtained 

from SAM (Souza et al., 2013). Further cloud masking is applied during the SMA step. 

ImgTools also uses SMA to produce fraction images for GV, NPV and S, although this approach differs 

from ClasLite in several points in this step. First, EMs are derived from the image itself rather than from 

a library of field-based spectra. The tool provides an interface for exploring and selecting extremes in 

the multi-dimensional image data, and signatures are calculated for selected areas. These are assumed to 

be pure or close enough to pure for its application of SMA. Second, ImgTools calculates the fraction of 

shade (Sh) across each image; the shade EM is defined as 0 for all reflectance bands. While this fraction 

will indicate areas of cloud and topographic shadows, the main purpose of its calculation is to account 

for canopy shading in the following step. ImgTools also calculates the fraction of cloud (C). 

A third difference is ImgTools’ unique calculation of a vegetation index called the Normalized-Difference 

Fraction Index (NDFI). This is akin to the NDVI, which combines the fractional components of the pixel 

to enhance the detection of forest degradation and deforestation: 

NDFI = (GV – (NPV + S)) / (GV + NPV + S)     (5) 

where GV, NPV and S are the percent coverage of green vegetation, non-green vegetation and soil, 

respectively. Unlike for ClasLite, GV, NPV and S in ImagTools do not usually sum to near one. This is 

mainly because much of the field of view (often more than half) is canopy shade. All of the above steps 

are automated, and like ClasLite, the remaining steps may or may not involve analyst interpretation.   

In addition to the three differences between SMA applied in ImgTools and ClasLite, there are additional 

differences. First, ImgTools classifies individual dates at a time and then estimates change by comparing 

the resulting static classifications among dates. Second, ImgTools masks clouds in the classification step, 

based on the cloud-fraction output of its SMA.  

Two approaches have been used in the classification step in ImgTools. The first is the application of 

threshold rules based on a hierarchical DT defined empirically from previous studies, as in ClasLite. In 

this case clouds, non-forest and water are first classified and then forest is classified as either intact or 

degraded: 
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 Cloud:   

  C ≥ 10             (6) 

 Water:  

  GV ≤ 5 and (NPV + S) < 15       (7) 

 Non-forest: 

  GV ≥ 85           (8)  

 Forest (within Remaining Area): 

  Intact: NDFI ≥ 75         (9a) 

  Degraded: NDFI < 75        (9b) 

where C, GV, NPV and S are the percent coverage of cloud, green vegetation, non-green vegetation and 

soil, respectively, and NDFI is the Normalized-Difference Fraction Index in percent. As in ClasLite, 

analysts can interactively adjust the threshold values or add new rules using a freely provided interface. 

Following classification of individual dates, changes are estimated by comparing the results from pairs of 

consecutive dates. This is followed by a set of rules to remove disallowed transitions. Examples are 

change from water to non-forest, assumed to be associated with changing water levels rather than land 

use, and change from forest to non-forest near cloud edges. A final step is filtering to a minimum-

mapping unit (MMU) of one-quarter hectare. Earlier versions of ImgTools used DTs in a supervised 

classification rather than the rule-based approach, and this is still an option in the latest version. 

ImgTools has been used to create maps of yearly deforestation from 2000 to 2010, with updates to 

2014 expected soon, for the entire Brazilian Amazon. Results agree closely with those from the 

PRODES system that relies on careful analyst interaction. ImgTools has also been applied to the entire 

lowlands of the rest of Amazonia for 2000, 2005 and 2010 (RAISG, 2015), and tested in Indonesia and 

elsewhere. 

4.3 GLAD 

GLAD (Potapov et al., 2012, 2014a, and 2014b) is developed by UMD and has been installed in several 

national-government laboratories for application in national monitoring. It is very different from the 

above approaches in many ways. It mines the entire data archive for a study area, is applied at the level 

of mosaics or entire study areas, creates a large set of temporal metrics and produces a time series of 

forest change for all selected dates within a study period. It does not use SMA, but instead utilizes 

reflectance, NDVI, and NDWI and temperature from Landsat’s thermal band. NDWI is the normalized-

difference water index, akin to NDVI but replaces red with middle-infrared. These are then used in a 

supervised classification process to estimate percent tree cover and tree-cover loss, forest cover and 

deforestation or other types of land-cover change of interest. While much of the process is automated, 

analyst interpretation occurs during the supervised classification step. However, the GLAD approach 

analyzes data and produces results for entire regions or countries in a single step rather than for 

individual image tiles that must be combined to form a national product. It has yielded published, nation-

wide deforestation assessments for the Democratic Republic of Congo, Indonesia and Peru (e.g., 

Potapov et al., 2012 and 2014; Margono, Potapov, Turubanova, Stolle, & Hansen, 2014) and a global map 

of tree-cover loss (Hansen et al., 2013). 

GLAD begins with a calculation of reflectance above the atmosphere, i.e., not corrected for atmospheric 

effects but corrected for sun and view angles. It then applies atmospheric correction by normalizing the 
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reflectance data to the atmospherically corrected data from MODIS. In doing this, GLAD fits the 

Landsat data to the long-term average of MODIS reflectance data. This purposely removes some of the 

seasonal variations in Landsat data. While using data from multiple seasons is very useful for mapping 

vegetation types, subtle differences within seasons may cause difficulties in estimating inter-annual 

changes. The approach in GLAD is to reduce seasonal signals in order to focus in inter-annual changes. 

This is fundamentally different from other approaches (some described in the following section) that 

focus on changes in seasonality from one year to another to estimate changes in cover types. GLAD has 

its own masking algorithm to remove cloudy and hazy pixels. As an ancillary product, GLAD outputs 

mosaics of cloud-free data for analyst reference in the training process. 

Following pre-processing, GLAD calculates a comprehensive set of temporal metrics. This greatly 

reduces the data volume of an archive’s time series, and users can later select which indices to use in 

their analyses. Metrics are in three groups and are calculated for red, near-infrared, middle-infrared, 

NDVI and NDWI. The first set of metrics is related to image date. Examples are the values for the mean 

of the first three and last three cloud-free observations, the regression slope of values versus 

observation date, the difference between the maximum value in the time series and previous or 

following minimum values and the largest change in values between consecutive dates. Second is a set of 

metrics related to the temporal distribution of values, representing the distributions over time as rank 

statistics. Examples are the values corresponding to selected ranks (minimum, 10%, 25%, etc.) and the 

averages for values between ranks (e.g., 10%–90% and 25%–75%). The third set of metrics is related to 

the values for the dates when NDVI, NDWI or temperature were greatest, least or at some rank level. 

Examples are reflectance corresponding to the observation when NDVI was at its minimum over the 

time series, or when NDWI was at a 90% rank within its temporal range. A full list is provided in 

Potopov et al. (2014b).  

Instead of applying SMA, GLAD applies DTs to estimate either classes such as forest, non-forest and 

forest change, or continuous parameters, such as percent tree cover and percent tree-cover loss. DTs 

produce large sets of binary decisions that are optimized to minimize errors in estimation. They usually 

have hundreds of binary splits, creating many sub-groups of the input data that are then grouped into 

the final classes of interest. Referring to Section 3.3, the output of DTs serve the role of the spectral 

signatures that are then used to determine the most likely class for all pixels in question. DTs are similar 

to rules in that they are a series of splits of input data, yet they are different in two ways. They are much 

larger, and computers determine the optimal sequence of splits to minimize within-class variance or 

error. This contrasts the user-defined small sets of rules used in the rule-based approaches above. 

DTs in GLAD are created via a supervised approach; analysts enter training sites for classes of interest. 

This is an iterative process of defining training sites, classifying data, evaluating the results and modifying 

training sites until an acceptable product is obtained. The algorithm first classifies whether there has 

been any forest change over the study period. It then assigns the year in which the change occurred 

based on evaluation of minimum annual NDVI throughout the period. 

The application of GLAD requires initial preparation, i.e., the logistics of data acquisition, staging, pre-

processing and calculation of metrics. This can be done for entire countries given sufficient computing 

speed and random access memory. Analyst interpretation is then required, although at a national or 

regional level instead of for each scene. This is comparable to analyst interpretation required in 

traditional supervised-classification approaches, or in the previous approaches if alternatives to default 

rules must be sought on a scene-by-scene basis. Once this is done, a map of forest change can be 

produced in one day for most countries (depending on country size and computing memory and 

processing speed). The resulting national classification then can be assessed and reproduced again with 

modified training data, as in a scene-by-scene approach. Because GLAD analyzes data summarized from 

the entire archive, it does not require selection of least-cloudy or most-appropriate season of images for 
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particular years, and it automatically attributes any classified deforestation among all years of the study 

period. 

Because of the approach to normalization of the image archive, and because the archive has been 

translated into a set of temporal metrics, it is possible to apply a derived DT to a new time period once 

the new data have been similarly pre-processed and transformed into the metrics. Or new training sites 

can be added to the existing set of training sites only for new areas of change. Both of these represent a 

high level of methodological consistency over time. GLAD can be applied to the estimation of other 

types of land cover and change as well, as long as analysts can provide training sites. 

4.4 OTHER APPROACHES IN RESEARCH 

While there is much research on automation of land-cover mapping, the examples in this section are 

associated with national agencies or national mapping processes. Of the four noted, three are based on 

changes in a set of spectral indices between two selected years, one detects yearly trends and seeks the 

appearance of new trends and one mines data to explore changes in seasonal signals between years. The 

former two are most similar to ClasLite in that they rely on spectral indices, their differences between 

years and thresholds or some other criteria to define change in or persistence of a land-cover type. The 

third uses single images from each year yet applies a trend-detection approach over a long-term time 

series. The fourth is most similar to GLAD in that it attempts to make the most use of the data archive 

and explore temporal patterns, although its temporal analysis is specific to the seasonality of different 

cover types and detection of changes in seasonal signals.   

1. Vegetation Change Tracker (VCT). The VCT is based on changes in spectral indices (Huang et al., 

2010). VCT is conducted by UMD, in support of the North American Carbon Program (NACP, 2015), 

but it does not involve GLAD. VCT works on individual Landsat scenes, using a single image from the 

summer growing season for each year of study. VCT constrains the analysis to within a baseline forest 

mask. It corrects the images for sun and view angle yet does not apply an atmospheric correction. 

Clouds are masked using the Automated Cloud Cover Assessment tool (ACCA) created for the 

Landsat program (Irish, 2000; Irish, Barker, Goward, & Arvidson, 2006), and additional water masking is 

conducted. It does not use SMA or many spectral indices as in the above methods but instead analyzes 

the six reflective Landsat bands and the Normalized Burn Ratio Index (NBRI), an additional spectral 

index based on the near-infrared and middle-infrared bands. The main algorithm produces an index of 

spectral difference for each pixel that is relative to each scene’s forested area. This is done by calculating 

the difference in a pixel’s reflectance from the mean for the scene’s forest for each band, dividing by the 

standard deviation for the scene’s forest and integrating the results from all bands. This results in an 

image of Z-scores, i.e., a relative measure of how close each pixel is to the average for forest pixels.  

While there is no atmospheric correction, the assumption is that constraining to the summer growing 

season and calculating relative indices normalizes the data to make them comparable over time and 

space. The consistency in the Z-scores for a site can be compared over time, and if a pixel’s Z-score 

becomes high (greater than three) and remains there for two years, it is assigned to the forest 

disturbance class. In other words, if a site becomes spectrally very different from the average for forest 

and remains so for two years, disturbance is assumed to have occurred.  

2. Comprehensive Change Detection Method (CCDM). CCDM is also based on changes in spectral 

indices (Jin et al., 2011). It is used in support of the US National Land Cover Database (NLCD, 2015). 

CCDM’s purpose, quite different from the rest of the methods discussed here, is to identify the 

maximum potential area of change rather than to seek the best estimate of land-use change. It is 

designed to be used together with the NLCD land-cover maps of 2006 and 2011 to estimate where 

changes have most likely occurred.  
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This method uses two images from each year, one from the leaf-off season and one from the leaf-on 

season. Spectral changes detected are assumed to indicate sites of biomass increase, decrease or 

stability. As in VCT, angle effects are corrected and atmospheric effects are not. CCDM applies two 

algorithms to two years of data separately for each season. The first is the Multi-Index Integrated 

Change Analysis (MIICA) that is based on changes in the values of four spectral indices. Two are the 

NDVI and the NBRI, noted above. The third is the Change Vector, i.e., the sum square of reflectance 

changes in all bands. The fourth is the Relative Change Vector Maximum (RVCMAX), which is the 

coefficient of variation (CV) for a pixel’s changes between years in all bands divided by the maximum 

CV. The second algorithm divides the scene into four zones, those with high versus low values of NDVI 

and NBRI and increases versus increases. The results from MIICA for both seasons are then ranked and 

combined with the zones to estimate areas of most probably change, i.e., increase or decrease in 

biomass. 

3. LandTrendr. LandTrendr (Kennedy et al., 2010; Cohen et al., 2010) was developed by Oregon State 

University and the US Forest Service. This approach takes individual images from each year, restricted 

to the mid-summer (middle July to late August) as much as possible. It applies the Cosine-Theta (COST) 

atmospheric-correction algorithm (Chavez, 1996) to an initial image, and compares dark objects over 

time to adjust later images to match to the base image. It uses a traditional set of spectral indices called 

Tassled Cap indices, which are published, consistent transformations derived from principal component 

analyses of many Landsat images (Crist, 1985). Indices are brightness, greenness and wetness and usually 

account for over 95 percent of the information content in Landsat images. LandTrendr also uses the 

NDVI and NBRI, as in several methods described above.  

Following calculation of indices for each year’s image, linear trend lines are fitted to multi-year data, the 

example from Kennedy, Yang and Cohen (2010) being 20 years. It then applies linear models to the time 

series of each index to determine temporal trajectories. Multiple models are produced, ranging from a 

straight line through the entire time series to lines with up to four linear segments. A statistical test is 

used on the models to select an optimal model. A set of rules are then applied to characterize the 

likelihood and type of estimated changes. The approach requires a long time series to determine trends, 

yet after that the model can theoretically can be updated yearly via automation. 

4. Continuous Change Detection and Classification (CCDC). CCDC, developed by BU, makes use 

of the entire Landsat archive within a study area and time period, as in GLAD. It uses all of Landsat’s 

reflective bands rather than derived indices. Data are atmospherically corrected using the LEDAPS tool 

and cloud-masked using BU’s Fmask tool, as in ClasLite. Further masking of cloud, cloud shadow and 

snow is applied by detecting outliers during the time-series analysis step.  

The model requires 15 temporal observations for any given pixel to determine a trend. Temporal data 

are smoothed as part of the trend analysis. Trends are disaggregated into seasonal, gradual multi-annual 

and abrupt change to a new trend. A statistical test is performed to determine an abrupt change, and 

this must be confirmed via three consecutive observations. At this point change is assigned and a new 

trend is estimated for the site. As with GLAD, the method is supervised, with analysts providing training 

sites that can be modified iteratively. It is also similar in its ability to classify multiple types of change, if 

training sites are provided. CCDC also requires an initial investment in accessing the data archive and 

setting up the pre-processing steps.  
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5.0 DISCUSSION 

5.1 RANGE OF APPROACHES 

The methodologies described in this report share main steps, although how each one is conducted 

varies. Most approaches calculate a set of spectral indices, which may be derived from individual images, 

pairs of images from two dates of analysis or time series of data. These approaches then are either 

supervised, where analysts enter training sites for different classes, or rule based, where analysts may 

still be required to interpret images to define most appropriate thresholds in indices to define rules. On 

one end of the range is image-by-image, rule-based approaches that require selection of images with few 

clouds and combining the results of neighboring classifications to produce a national product. On the 

other end, data-mining approaches require accessing a large archive of data and then staging and pre-

processing the data, followed by analysis of an entire time series and/or region at once.  

All methodologies apply corrections for sun and view angles and almost all apply atmospheric 

correction. Most are based on freely available tools. GLAD matches Landsat data to MODIS data, which 

are already atmospherically corrected. VCT uses indices that avoid the need for atmospheric correction. 

All methods use some form of automated cloud masking, either with a freely available tool or a simple, 

index-based rule, and some apply additional masking of clouds in the classification step. 

Following pre-processing, methods vary in the calculation of indices used for inputs to classification. 

Some are ratios of reflectances in different spectral bands, SMA applied to individual dates and two-date 

differences in reflectances or spectral indices. Others are multi-temporal indices that are focused on 

seasonal signals or multi-annual trends. 

For the classification step, ClasLite and ImgTools are both rule-based, i.e., they define classes via a set of 

thresholds applied to the indices output from SMA reflectance values. Both offer the option of 

iteratively adjusting the thresholds or defining new rules if the default outputs are not acceptable. 

ImgTools also offers the option of applying supervised DTs to the indices instead of the rules set. VCT 

applies a threshold to define outliers in the overall distribution of change in reflectance between dates of 

analysis. CCDM is based on changes between dates in a set of indices, ranking them to estimate areas of 

probable change. The input images for ClasLite and ImgTools are user-selected individual images from 

each year of analysis; for VCT they are individual images constrained to a specific season and for CCDM 

they are two images from each year, one from the leaf-on season and one from the leaf-off. 

In contrast to the above approaches, LandTrendr, CCDC and GLAD use time-series analysis. 

LandTrendr constrains individual images from each year to a specific season. It then statistically 

determines linear trends over years and identifies breaks and the appearance of new trends to define 

changes in cover type. CCDC also identifies changes in trends; however, these are trends in seasonality. 

CCDC mines the Landsat archive to produce the densest seasonal signals possible, especially important 

in cloudy areas. Both LandTrendr and CCDC require multiple observations to confirm a new trend, 

minimizing misclassifications caused by ephemeral artifacts such as an un-masked cloud edge. 

GLAD can be seen as a hybrid approach compared to the above. It mines data and conducts time-series 

analysis via calculation of a set of multi-temporal indices that indicate temporal trends, differences and 

abrupt changes. It then applies a supervised DT to map change over an entire study period. It then again 

uses time-series analysis, analyzing the NDVI sequence, to assign changes to specific years. GLAD can be 

applied to large blocks of neighboring scenes rather than to individual scenes, and it has been used to 
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classify entire countries in a single step. The data-mining approach is important in cloudy areas, and the 

regional approach eliminates the need for decision making when producing mosaics of classified scenes. 

5.2 IMPLICATIONS FOR MONITORING 

Potential for inconsistency in interpretation. The application of these methods has almost always 

been semi-automated. Automation is in the pre-processing and data-transformation steps, such as cloud 

masking and calculation of indices. Thus far, these methods have required some level of user interaction 

in the classification step, and this is where inconsistencies may occur, since users may vary in 

interpreting images. 

Supervised classifications require user input to define training areas, evaluate results and revise training 

sites iteratively until an acceptable product is obtained. Rule-based classifications require user input to 

adjust thresholds iteratively, and thus have a dynamic of evaluation and re-classification similar to the 

supervised approaches. Trend-detection approaches are in the research phase or have only been applied 

to the United States. In most applications, they can be expected also to require user input to adjust the 

criteria determining the appearance of a new trend that defines land-cover change.    

Multiple analysts working in a laboratory may interpret different images differently within a particular 

time period of analysis. The same team or new analysts may interpret images differently again when a 

new time period is analyzed. To minimize these risks, care must be taken to standardize how images are 

displayed on screens, i.e., the band combinations and stretching of the data upon display. It is also critical 

to understand how different classes may appear when images are displayed differently. The team should 

come to agreement on interpretation, especially for difficult areas such as mountains, deciduous 

vegetation and secondary forest fallows. Analysts should refer to the images and classifications from 

neighboring scenes and from the previous analyses to ensure consistent interpretation. 

Image selection and dates. Another area where inconsistency can occur is in decisions on image 

selection. For approaches that do not use data mining, i.e. all but GLAD and CCDC in this review, the 

particular images for each year must be selected. The spectral patterns of areas of deciduous forest can 

vary significantly even within a season. For example, rule-based approaches such as ClasLite and 

ImgTools could over- or underestimate change if leaf-growth or fall had begun at the time of only one of 

the two image dates in question and if rules are not adjusted accordingly. For cloudy areas, multiple 

images within a year are needed to obtain acceptable coverage. Options may be limited and it may be 

necessary to use images from different seasons, potentially leading to the problem noted above. How 

many additional images are to be acquired must also be decided; selecting more means increased 

coverage and increased analysis time and cost.  

For scene-by-scene approaches, i.e. all but GLAD in this review, completed classifications of individual 

scenes must be combined to produce a national mosaic. Approximately 20 percent of neighboring 

Landsat scenes overlap along the eastern and western edges. Classification results over the non-cloudy 

portions of these areas will differ. Different criteria may be used, such as the date of the image or an 

evaluation of which classification is most correct. There may be dozens of tiles to combine for larger 

countries, and the process may be complicated and should be well documented.  

Finally, source images vary by date, with implications for the calculation of rates. Images will often be far 

from December 31. The key is whether images are acquired before, during or after the typical forest-

clearing season. In the tropics the middle to late dry season is when the least-cloudy images are 

available. Variation in particular image dates may cause considerable differences in estimates of inter-

annual rates of clearing. In very cloudy areas this is an issue even for data-mining approaches, as there 

may be no cloud-free data for the latter part of a given year for portions of a study area. In any 
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approach it is important to record the date of all source data at the pixel level in order to allow 

corrections for image date in any calculations of rates. 

Forest benchmark versus change estimation. Given the above concerns, a key point should be kept in 

mind. It is advisable to separate the creation of a forest benchmark map from measurement of change 

over time within that defined forest area. This paper focuses on the latter. The former should be 

conducted first and thoroughly validated and evaluated by stakeholders before applying the latter. The 

benchmark should be as complete as possible. It may include a classification of forest types or may be 

combined with other data to delineate forest sub-types. Significant areas of secondary forest fallows or 

plantations should be separated from mature forest. Finally, the delineation of forest must be aligned 

with the national definition in order to enable comparability with other countries. Completing a 

benchmark allows the subsequent monitoring to focus solely on losses within the benchmark area. This 

is the process which must be consistently applied over time, whereas the benchmark need only be 

produced once. 

Once a forest benchmark map is finalized, it need not be repeated. What requires consistency over time 

is the estimation of change within forests. In most cases, forest clearing over time is relatively easy to 

interpret since it is usually an abrupt change that produces a strong signal of spectral change. Exceptions 

may occur. An example is when very open or very deciduous forests appeared similar to the post-

clearing land cover, in which the season of selected images is important. Another example is when the 

post-clearing land cover is already in a secondary-forest state, although this is unlikely if monitoring is 

conducted at least bi-annually, as is required to produce national BURs. 

On the other hand, differences in interpretation are more likely for natural gradations of vegetation that 

are close to the forest-definition criteria boundary, such as open or short-statured woodlands, tree-

covered wetlands and older secondary forest fallows. These are concerns mostly for the creation of the 

forest benchmark map. For these reasons, variations in analyst interpretation for monitoring clearing 

within a defined forest area should be manageable, and further advances towards full automation to 

further increase consistency is expected. 

All of these methods have the potential for full automation with further development and calibration for 

forest changes in a given country or sub-national region. For rule-based and trend approaches, a country 

could potentially be stratified into different regions where the spectral patterns for different types of 

change are relatively consistent. These may be, for example, strata for mountains, seasonally inundated 

forest, different levels of deciduousness and woodland density, etc. It is theoretically possible for stable 

rules to be developed within each region, although this is an active area of research. The default rules in 

ClasLite and ImgTools are examples, although in practice they are often replaced by user-defined rules. 

DTs have already been demonstrated in the production of validated national estimates at once, an 

example of consistent methodological application over a large area. DTs could be developed for one 

time period and directly applied to a new one with no need for new training data. This has been tested 

for the GLAD methodology but not yet used to generate a published national update. Both the rule-

based and supervised approaches already can be applied with some consistency by minimizing variations 

in rules applied over time or by carrying forward much of the training data from a previous time period 

to the analysis of a new time period. In these cases, detailed documentation could demonstrate the level 

of consistency.  

Finally, we expect that within five years NASA’s Landsat program will provide seasonal Landsat mosaics. 

This would reduce, although not eliminate, many of complications associated with cloud-gap filling, 

combining neighboring-scene classifications and image-date selection. However, there would still be sub-

seasonal variations in reflectance patterns to address and the need to record source image data for rate 

estimation. 
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6.0  CONCLUSION 

The issues discussed in this report have direct relevance to the IPCC principles listed in the 

introduction.  

Transparency: It is important that methodological details for each a step in the various approaches to 

satellite monitoring of forest change are clear to any external reviewer, available to the public and 

sufficient for a new team to replicate or update the analyses. Given the above discussion, this should 

include provision of ancillary data, along with documentation and final product, to include dates of the 

source imagery used, how completed classifications were combined into a national product and how 

data gaps and varying image dates were addressed when calculating rates for different strata. While not 

the topic of this paper, the particular methods for estimating errors and any adjustments for bias should 

be reported. Each country team should provide documentation of the rules set and how rule-based 

approaches may have varied over the country, and training site files for supervised approaches. 

Additional helpful information would be graphic examples of the implementation of the rules or the 

training site maps along with the underlying interpreted spectral images. A reviewer who can see this 

across a country and reporting periods can better assess consistency. 

Completeness: The main issue for this principle is filling gaps, mostly caused by cloud cover, to analyze the 

entire country or a managed portion of the country. Some areas may be consistently cloudy and may 

require other data sources or field surveys if considerable forest change is believed to occur there. In 

scene-by-scene approaches, the minor additional reduction in error in estimation of rates does not 

warrant the cost of additional images to obtain greater coverage.  

Comparability: This is mainly a matter of aligning the analysis with the national forest definition, mostly 

addressed when creating the forest benchmark map. However, providing samples of rules applied or 

training sites along with source imagery can help demonstrate comparability. Additional high-resolution 

commercial data, where individual trees can be observed, or aerial or field surveys also may help in 

demonstrating alignment. 

Accuracy: This is a matter of comparison with reference data, which may come from high-resolution 

imagery, or aerial or ground surveys. A statistically robust sampling scheme is important, and one should 

consider effects of bias in the validation process.  

Latency: While not one of the IPCC principles, adequate latency is a requirement if countries are to 

report the most recent changes on a bi-annual basis. It is here that full automation will be most 

important. If full automation is not possible, approaches that involve regional or national, bulk 

processing, such as country-wide classifications, can facilitate timely reporting.   

Consistency: This principle is perhaps the most important to demonstrate, as inconsistencies raise 

concerns that reported trends over time are in part due to methodological variations. The various 

methods discussed in this report all have shown improved consistency over time through automated 

pre-processing and data-transformation steps. They also seek to improve consistency by standardizing 

rules or enabling training sites or resulting DTs to be applied to new time periods of analysis. In current 

applications, all methods have had some level of analyst interaction, and thus the above discussion of 

inconsistency in interpretation is most relevant to this principle.  

Consistency in the MRV context remains vaguely defined. For some it may mean very strong constraints 

on methodological variations, which is unrealistic in an evolving technical field. For others it may mean 
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demonstrating similarities among reporting dates in parameters such as forest definition, MMU, error 

and bias, regardless of methodological variations. Further discussion within the MRV community on a 

definition of and criteria for demonstrating a consistent, national forest-monitoring system is warranted. 
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